Prof. Dr. techn. Michael Schindelegger
Prof. Dr. techn. Michael Schindelegger
| Juniorprofessor |
| |
| +49 228 73-6345 |
| +49 228 73-3029 |
| 2.007 |
|
Institut für Geodäsie und Geoinformation Nussallee 15 D-53115 Bonn |
Berufliches Profil
Seit 2018 Juniorprofessor für Geodätische Erdsystemforschung, Institut für Geodäsie und Geoinformation, Universität Bonn.
2009 – 2018 Projekt- bzw. Universitätsassistent, Department für Geodäsie und Geoinformation, Technische Universität Wien.
2009 – 2014 Doktorat der technischen Wissenschaften (Dr. techn.), Fachgebiet Vermessung und Geoinformation, Technische Universität Wien.
Forschungsinteressen
Numerische Modellierung und geodätische Beobachtung dynamischer Prozesse im Erdsystem.
Gezeiten der Ozeane und Atmosphäre, Meeresspiegel.
Erdrotation.
Projekte
DFG AMOCING – Atlantic Meridional Overturning Circulation: Inferences from Satellite Gravimetry and Numerical Ocean Models for North Atlantic Deep Water Transports. Individual Project IP2 within the second phase of Research Unit NEROGRAV.
DFG DISCLOSE – Disentangling Climatic Signals in Earth Orientation Parameters.
DFG SCOOP – Secular Changes in Ocean Tides - Processes and Projections.
FWF SCORE – Simulating Oceanic Contributions to Earth Rotation.
FWF/DFG ASPIRE – Atmosphere-Induced Short Period Variations of Earth Rotation.
Auszeichnungen
2016: Karl Rinner Preis der Österreichischen Geodätischen Kommission.
2015: Promotio sub auspiciis Praesidentis: Verleihung des Doktorates unter den Auspizien des österreichischen Bundespräsidenten Dr. Heinz Fischer.
2014: Würdigungspreis des Bundesministeriums für Wissenschaft, Forschung und Wirtschaft (Ö).
Funktionen (Auswahl)
Seit 2020: Associate Editor ‘Journal of Geodesy’.
2015 - 2023: Vice-Chair of IAG Sub-Commission 3.3 ‘Earth Rotation and Geophysical Fluids’.
Lehre
Hydrographie.
Globale Geodätische 3D-Positionsbestimmung.
Understanding and Modeling Ocean Dynamics (2018/2019).
Eisschilde - Physik und Geodätische Beobachtung.
Publikationen
Schindelegger, M. (2023), Earth Rotation, Excitation, Tidal. In: Sideris, M. G. (ed.), Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham., https://doi.org/10.1007/978-3-319-02370-0_101-1.
Börger, L., Schindelegger, M., Dobslaw, H., Salstein, D. (2023), Are ocean reanalyses useful for Earth rotation research? Earth and Space Science, 10, e2022EA002700, https://doi.org/10.1029/2022EA002700.
Brus, S. R., Barton, K. N., Pal, N., Roberts, A. F., Engwirda, D., Petersen, M. R., Arbic, B. K., Wirasaet, D., Westerink, J. J., Schindelegger, M. (2023), Scalable self attraction and loading calculations for unstructured ocean tide models. Ocean Modelling, 182, 102160, https://doi.org/10.1016/j.ocemod.2023.102160.
Schindelegger, M., Sakazaki, T., Green, M. (2023). Atmospheric tides–An Earth system signal. In: Green, M., Duarte, J. (eds.), A Journey Through Tides. Elsevier, pp. 389-416, https://doi.org/10.1016/B978-0-323-90851-1.00007-8.
Lau, H. C. P., Schindelegger, M. (2023). Solid Earth tides. In: Green, M., Duarte, J. (eds.), A Journey Through Tides. Elsevier, pp. 365-387, https://doi.org/10.1016/B978-0-323-90851-1.00016-9.
Schindelegger, M., Kotzian, D. P., Ray, R.D., Green, J. A. M., Stolzenberger, S (2022). Interannual changes in tidal conversion modulate M2 amplitudes in the Gulf of Maine. Geophysical Research Letters, 49, e2022GL101671, https://doi.org/10.1029/2022GL101671.
Barton, K. N., Pal, N., Brus, S. R., Petersen, M. R., Arbic, B. K., Engwirda, D., Roberts, A. F., Westerink, J. J., Wirasaet, D., Schindelegger, M. (2022). Global barotropic tide modeling using inline self-attraction and loading in MPAS-Ocean. Journal of Advances in Modeling Earth Systems, 14, e2022MS003207, https://doi.org/10.1029/2022MS003207.
Piecuch, C. G., Fukumori, I., Ponte, R. M., Schindelegger, M., Wang, O., Zhao, M. (2022). Low-frequency dynamic ocean response to barometric-pressure loading. Journal of Physical Oceanography, 52, 2627–2641, https://doi.org/10.1175/JPO-D-22-0090.1.
Ponte, R. M., Schindelegger, M. (2022). Global ocean response to the 5‐day Rossby‐Haurwitz atmospheric mode seen by GRACE. Journal of Geophysical Research: Oceans, 127, e2021JC018302, https://doi.org/10.1029/2021JC018302.
Daher, H., Arbic, B. K., Williams, J. G., Ansong, J. K., Boggs, D. H., Müller, M., Schindelegger, M., Austermann, J., Cornuelle, B. D., Crawford, E. B., Fringer, O. B., Lau, H. C. P., Lock, S. J., Maloof, A. C., Menemenlis, D., Mitrovica, J. X., Green, J. A. M., Huber, M. (2021). Long-term Earth-Moon evolution with high-level orbit and ocean tide models. Journal of Geophysical Research: Planets, 126, e2021JE006875, https://doi.org/10.1029/2021JE006875.
Harker, A. A., Schindelegger, M., Ponte, R. M., Salstein, D. A. (2021). Modeling ocean-induced rapid Earth rotation variations: an update. Journal of Geodesy, 95, 110, https://doi.org/10.1007/s00190-021-01555-z .
Schindelegger, M., Harker, A. A., Ponte, R. M., Dobslaw, H., Salstein, D. A. (2021). Convergence of daily GRACE solutions and models of submonthly ocean bottom pressure variability. Journal of Geophysical Research: Oceans, 126, e2020JC017031, https://doi.org/10.1029/2020JC017031.
Jänicke, L., Ebener, A., Dangendorf, S., Arns, A., Schindelegger, M., Niehüser, S., Haigh, I.D., Woodworth, P.L., Jensen, J. (2021). Assessment of tidal range changes in the North Sea from 1958 to 2014. Journal of Geophysical Research: Oceans, 126, e2020JC016456, https://doi.org/10.1029/2020JC016456.
Haigh, I.D., Pickering, M.D., Green, J.A.M., Arbic, B.K., Arns, A., Dangendorf, S., Hill, D., Horsburgh, K., Howard, T., Idier, D., Jay, D.A., Jänicke, L., Lee, S.B., Müller, M., Schindelegger, M., Talke, S.A., Wilmes, S.-B., Woodworth, P.L. (2020). The tides they are a-changin': A comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics, doi:10.1029/2018RG000636.
Harker, A., Green, J.A.M., Schindelegger, M., Wilmes, S.-B. (2019). The impact of sea-level rise on tidal characteristics around Australia. Ocean Science, 15, 147–159, doi:10.5194/os-15-147-2019.
Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609, doi: https://doi.org/10.1029/2018JC013959.
Girdiuk A., Schindelegger, M., Madzak M., Böhm J. (2018). Detection of the atmospheric S1 tide in VLBI polar motion time series. In: Freymueller J.T., Sánchez L. (eds.) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia , vol. 147, 163–169, doi:10.1007/1345_2016_234.
Schindelegger, M., (2017). Erdrotation – ein Sprungbrett zur Studie von Ozeangezeiten. Österreichische Zeitschrift für Vermessung und Geoinformation (VGI), 2017(4), 218–229.
Schindelegger, M., Salstein D., Einšpigel D., Mayerhofer C. (2017). Diurnal atmosphere-ocean signals in Earth’s rotation rate and a possible modulation through ENSO. Geophysical Research Letters , 44(6), 2755–2762, doi:10.1002/2017GL072633.
Madzak M., Schindelegger, M., Böhm J., Bosch W., Hagedoorn J. (2016). High-frequency Earth rotation variations deduced from altimetry-based ocean tides. Journal of Geodesy , 90(11), 1237–1253, doi:10.1007/s00190-016-0919-4.
Schindelegger, M., Einšpigel, D., Salstein, D., Böhm, J. (2016). The global S1 tide in Earth’s nutation. Surveys in Geophysics, 37(3), pp 643–680, doi.org/10.1007/s10712-016-9365-3.
Schindelegger, M., Dobslaw, H. (2016). A global ground truth view of the lunar air pressure tide L2. Journal of Geophysical Research: Atmospheres, 121 (1), 95–110, doi.10.1002/2015JD024243.
Böhm, J., Möller, G., Schindelegger, M., Pain, G., Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solutions, 19 (3), 433–441, doi.org/10.1007/s10291-014-0403-7.
Schindelegger, M., Ray, R. D. (2014). Surface pressure tide climatologies deduced from a quality-controlled network of barometric observations. Monthly Weather Review, 142 (12), 4872–4889, doi.org/10.1175/MWR-D-14-00217.1.
Schindelegger, M. (2014). Atmosphere-induced short period variations of Earth rotation. Geowissenschaftliche Mitteilungen, Heft 96, Department für Geodäsie und Geoinformation, TU Wien, 172 pp.
Schindelegger, M., Salstein, D., Böhm, J. (2013). Recent estimates of Earth-atmosphere interaction torques and their use in studying polar motion variability. Journal of Geophysical Research: Solid Earth, 118 (8), 4586–4598, doi.10.1002/jgrb.50322.
Schindelegger, M., Böhm, J., Salstein, D. (2013). Seasonal and intra-seasonal polar motion variability as deduced from atmospheric torques. Journal of Geodesy and Geoinformation, 1 (2), 89–95, doi.10.9733/jgg.231112.1.
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40 (6), 1069–1073, doi.10.1002/grl.50288.
Schindelegger, M., Böhm, S., Böhm, J., Schuh, H. (2013). Atmospheric effects on Earth rotation. In : Böhm J., Schuh H. (eds.) Atmospheric effects in space geodesy. Springer, pp. 181–231, doi:10.1007/978-3-642-36932-2_6.
Karbon, M., Wijaya, D., Schindelegger, M., Böhm, J., Schuh, H. (2011). Atmospheric effects on the Earth gravity field featured by TU Vienna. In: Böhm, J., Reiterer, A., Rottensteiner, F., Woschitz, H. (eds.) Österreichische Zeitschrift für Vermessung und Geoinformation, Special Issue for the XXV General Assembly of the International Union of Geodesy and Geophysics (IUGG), Melbourne, Australia, Heft 2/2011, pp. 122–130.
Schindelegger, M., Böhm, J., Salstein, D., Schuh, H. (2011). High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. Journal of Geodesy, 85 (7) , 425–433, doi:10.1007/s00190-011-0458-y.