Sie sind hier: Startseite Mitarbeiter Prof. Dr. techn. Michael Schindelegger

Prof. Dr. techn. Michael Schindelegger

MS2021  

Prof. Dr. techn. Michael Schindelegger

  • Funktion:

 Juniorprofessor

  • Email:

schindelegger [at] igg [dot] uni-bonn [dot] de

  • Telefon:

 +49 228 73-6345

  • Fax:

 +49 228 73-3029

  • Raum:

 2.007

  • Anschrift:

 Institut für Geodäsie und Geoinformation

 Nussallee 15

 D-53115 Bonn

Berufliches Profil

  • Seit 2018 Juniorprofessor für Geodätische Erdsystemforschung, Institut für Geodäsie und Geoinformation, Universität Bonn.

  • 20092018 Projekt- bzw. Universitätsassistent, Department für Geodäsie und Geoinformation, Technische Universität Wien.

  • 20092014 Doktorat der technischen Wissenschaften (Dr. techn.), Fachgebiet Vermessung und Geoinformation, Technische Universität Wien.

Forschungsinteressen

  • Numerische Modellierung und geodätische Beobachtung dynamischer Prozesse im Erdsystem.

  • Gezeiten der Ozeane und Atmosphäre, Meeresspiegel.

  • Erdrotation.

Projekte

  • DFG AMOCING – Atlantic Meridional Overturning Circulation: Inferences from Satellite Gravimetry and Numerical Ocean Models for North Atlantic Deep Water Transports. Individual Project IP2 within the second phase of Research Unit NEROGRAV.

  • DFG DISCLOSE – Disentangling Climatic Signals in Earth Orientation Parameters.

  • DFG SCOOP – Secular Changes in Ocean Tides - Processes and Projections.

  • FWF SCORE – Simulating Oceanic Contributions to Earth Rotation.

  • FWF/DFG ASPIRE – Atmosphere-Induced Short Period Variations of Earth Rotation.

Auszeichnungen

  • 2016: Karl Rinner Preis der Österreichischen Geodätischen Kommission.

  • 2015: Promotio sub auspiciis Praesidentis: Verleihung des Doktorates unter den Auspizien des österreichischen Bundespräsidenten Dr. Heinz Fischer.

  • 2014: Würdigungspreis des Bundesministeriums für Wissenschaft, Forschung und Wirtschaft (Ö).

Funktionen (Auswahl)

  • Seit 2020: Associate Editor ‘Journal of Geodesy’.

  • 2015 - 2023: Vice-Chair  of  IAG  Sub-Commission  3.3  ‘Earth  Rotation  and  Geophysical Fluids’.

Lehre

  • Hydrographie.

  • Globale Geodätische 3D-Positionsbestimmung.

  • Understanding and Modeling Ocean Dynamics (2018/2019).

  • Eisschilde - Physik und Geodätische Beobachtung.

Publikationen

  • Schindelegger, M. (2023), Earth Rotation, Excitation, Tidal. In: Sideris, M. G. (ed.), Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham., https://doi.org/10.1007/978-3-319-02370-0_101-1.

  • Börger, L., Schindelegger, M., Dobslaw, H., Salstein, D. (2023), Are ocean reanalyses useful for Earth rotation research? Earth and Space Science, 10, e2022EA002700, https://doi.org/10.1029/2022EA002700.

  • Brus, S. R., Barton, K. N., Pal, N., Roberts, A. F., Engwirda, D., Petersen, M. R., Arbic, B. K., Wirasaet, D., Westerink, J. J., Schindelegger, M. (2023), Scalable self attraction and loading calculations for unstructured ocean tide models. Ocean Modelling, 182, 102160, https://doi.org/10.1016/j.ocemod.2023.102160.

  • Schindelegger, M., Sakazaki, T., Green, M. (2023). Atmospheric tides–An Earth system signal. In: Green, M., Duarte, J. (eds.), A Journey Through Tides. Elsevier, pp. 389-416, https://doi.org/10.1016/B978-0-323-90851-1.00007-8.

  • Lau, H. C. P., Schindelegger, M. (2023). Solid Earth tides. In: Green, M., Duarte, J. (eds.), A Journey Through Tides. Elsevier, pp. 365-387, https://doi.org/10.1016/B978-0-323-90851-1.00016-9.

  • Schindelegger, M., Kotzian, D. P., Ray, R.D., Green, J. A. M., Stolzenberger, S (2022). Interannual changes in tidal conversion modulate M2 amplitudes in the Gulf of Maine. Geophysical Research Letters, 49, e2022GL101671, https://doi.org/10.1029/2022GL101671.

  • Barton, K. N., Pal, N., Brus, S. R., Petersen, M. R., Arbic, B. K., Engwirda, D., Roberts, A. F., Westerink, J. J., Wirasaet, D., Schindelegger, M. (2022). Global barotropic tide modeling using inline self-attraction and loading in MPAS-Ocean. Journal of Advances in Modeling Earth Systems, 14, e2022MS003207, https://doi.org/10.1029/2022MS003207.

  • Piecuch, C. G., Fukumori, I., Ponte, R. M., Schindelegger, M., Wang, O., Zhao, M. (2022). Low-frequency dynamic ocean response to barometric-pressure loading. Journal of Physical Oceanography, 52, 2627–2641, https://doi.org/10.1175/JPO-D-22-0090.1.

  • Ponte, R. M., Schindelegger, M. (2022). Global ocean response to the 5‐day Rossby‐Haurwitz atmospheric mode seen by GRACE. Journal of Geophysical Research: Oceans, 127, e2021JC018302, https://doi.org/10.1029/2021JC018302.

  • Daher, H., Arbic, B. K., Williams, J. G., Ansong, J. K., Boggs, D. H., Müller, M., Schindelegger, M., Austermann, J., Cornuelle, B. D., Crawford, E. B., Fringer, O. B., Lau, H. C. P., Lock, S. J., Maloof, A. C., Menemenlis, D., Mitrovica, J. X., Green, J. A. M., Huber, M. (2021). Long-term Earth-Moon evolution with high-level orbit and ocean tide models. Journal of Geophysical Research: Planets, 126, e2021JE006875, https://doi.org/10.1029/2021JE006875.

  • Harker, A. A., Schindelegger, M., Ponte, R. M., Salstein, D. A. (2021). Modeling ocean-induced rapid Earth rotation variations: an update. Journal of Geodesy, 95, 110, https://doi.org/10.1007/s00190-021-01555-z .

  • Schindelegger, M., Harker, A. A., Ponte, R. M., Dobslaw, H., Salstein, D. A. (2021). Convergence of daily GRACE solutions and models of submonthly ocean bottom pressure variability. Journal of Geophysical Research: Oceans, 126, e2020JC017031, https://doi.org/10.1029/2020JC017031.

  • Jänicke, L., Ebener, A., Dangendorf, S., Arns, A., Schindelegger, M., Niehüser, S., Haigh, I.D., Woodworth, P.L., Jensen, J. (2021). Assessment of tidal range changes in the North Sea from 1958 to 2014. Journal of Geophysical Research: Oceans, 126, e2020JC016456, https://doi.org/10.1029/2020JC016456.

  • Haigh, I.D., Pickering, M.D., Green, J.A.M., Arbic, B.K., Arns, A., Dangendorf, S., Hill, D., Horsburgh, K., Howard, T., Idier, D., Jay, D.A., Jänicke, L., Lee, S.B., Müller, M., Schindelegger, M., Talke, S.A., Wilmes, S.-B., Woodworth, P.L. (2020). The tides they are a-changin': A comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics,  doi:10.1029/2018RG000636.

  • Harker, A., Green, J.A.M., Schindelegger, M., Wilmes, S.-B. (2019). The impact of sea-level rise on tidal characteristics around Australia. Ocean Science, 15, 147–159, doi:10.5194/os-15-147-2019.

  • Schindelegger, M., Green, J.A.M., Wilmes, S.-B., Haigh, I.D. (2018). Can we model the effect of observed sea level rise on tides? Journal of Geophysical Research: Oceans, 123, 4593–4609, doi: https://doi.org/10.1029/2018JC013959.

  • Girdiuk A., Schindelegger, M., Madzak M., Böhm J. (2018). Detection of the atmospheric S1 tide in VLBI polar motion time series. In: Freymueller J.T., Sánchez L. (eds.) International Symposium on Earth and Environmental Sciences for Future Generations. International Association of Geodesy Symposia , vol. 147, 163–169, doi:10.1007/1345_2016_234.

  • Schindelegger, M., (2017). Erdrotation – ein Sprungbrett zur Studie von Ozeangezeiten. Österreichische Zeitschrift für Vermessung und Geoinformation (VGI), 2017(4), 218–229. 

  • Schindelegger, M., Salstein D., Einšpigel D., Mayerhofer C. (2017). Diurnal atmosphere-ocean signals in Earth’s rotation rate and a possible modulation through ENSO. Geophysical Research Letters , 44(6), 2755–2762, doi:10.1002/2017GL072633.

  • Madzak M., Schindelegger, M., Böhm J., Bosch W., Hagedoorn J. (2016). High-frequency Earth rotation variations deduced from altimetry-based ocean tides. Journal of Geodesy , 90(11), 1237–1253, doi:10.1007/s00190-016-0919-4.

  • Schindelegger, M., Einšpigel, D., Salstein, D., Böhm, J. (2016). The  global S1 tide in Earth’s nutation. Surveys in Geophysics, 37(3), pp 643–680, doi.org/10.1007/s10712-016-9365-3

  • Schindelegger, M., Dobslaw, H. (2016). A global ground truth view of the lunar air pressure tide L2. Journal of Geophysical Research: Atmospheres, 121 (1), 95–110, doi.10.1002/2015JD024243.

  • Böhm, J., Möller, G., Schindelegger, M., Pain, G., Weber, R. (2015). Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solutions, 19 (3), 433–441, doi.org/10.1007/s10291-014-0403-7.

  • Schindelegger, M., Ray, R. D. (2014). Surface pressure tide climatologies deduced from a quality-controlled network of barometric observations. Monthly Weather Review, 142 (12), 4872–4889, doi.org/10.1175/MWR-D-14-00217.1.

  • Schindelegger, M.  (2014). Atmosphere-induced  short  period  variations  of  Earth  rotation.  Geowissenschaftliche Mitteilungen, Heft 96, Department für Geodäsie und Geoinformation, TU Wien, 172 pp.

  • Schindelegger, M., Salstein, D., Böhm, J. (2013). Recent estimates of Earth-atmosphere interaction torques and their use in studying polar motion variability. Journal of Geophysical Research: Solid Earth, 118 (8), 4586–4598, doi.10.1002/jgrb.50322

  • Schindelegger, M., Böhm, J., Salstein, D. (2013). Seasonal and intra-seasonal polar motion variability as deduced from atmospheric torques. Journal of Geodesy and Geoinformation, 1 (2), 89–95, doi.10.9733/jgg.231112.1.

  • Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40 (6), 1069–1073, doi.10.1002/grl.50288.

  • Schindelegger, M., Böhm, S., Böhm, J., Schuh, H. (2013). Atmospheric effects on Earth rotation. In : Böhm J.,   Schuh H. (eds.) Atmospheric effects in space geodesy. Springer, pp. 181–231, doi:10.1007/978-3-642-36932-2_6. 

  • Karbon, M., Wijaya, D., Schindelegger, M., Böhm, J., Schuh, H. (2011). Atmospheric effects on the Earth gravity field featured by TU Vienna. In: Böhm, J., Reiterer, A., Rottensteiner, F., Woschitz, H. (eds.) Österreichische Zeitschrift für Vermessung und Geoinformation, Special Issue for the  XXV  General  Assembly  of  the  International  Union  of  Geodesy  and  Geophysics  (IUGG), Melbourne, Australia, Heft 2/2011, pp. 122–130.

  • Schindelegger, M., Böhm, J., Salstein, D., Schuh, H. (2011). High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. Journal of Geodesy, 85 (7) , 425–433, doi:10.1007/s00190-011-0458-y.

Artikelaktionen